Notes on Pandas

general notes, tips on using Pandas
Published

September 13, 2023

Introduction

Pandas is a powerful and versatile tool for data analysis and manipulation. I use it almost every day to analyse something.

A dataframe(DF) is a table with rows and columns. It has several properties attached to it. Importantly it allows data analysis and manipulation.


pd.set_option('max_columns', 200)

df = pd.read_csv('filename')
df = pd.read_parquet('filename')

df.shape

df.info()

df.describe()

df.head()/tail()
1
Increases the max columns displayed to 200. Default is 20.
2
Reads an appropriate file format to a DF.
3
Returns a tuple with the dimensions of a DF.
4
Returns concise summary of a DF.
5
Generates descriptive statistics of a DF.
6
Returns the first(head) or last(tail) 5 rows of a DF.

Data Types

df.dtypes

df.select_dtypes('#select from prev command#')

df.select_dtypes('object').columns.tolist()

f"categorical columns: {df.select_dtypes('object').columns.tolist()}"

df.select_dtypes('object').head()

df.select_dtypes('int64').head().style.background_gradient(cmap='YlOrRd')
1
Provides data types of each column in a DF.
2
Allows to select a particular data type. int64 picks all the int columns.
3
Lists all columns that have object dtype.
4
A way to display categorical columns.
5
Outputs first 10 rows of object columns.
6
Colour gradients the int datatype columns.

Explore columns


df.columns

df.drop(['#columntodrop'],axis=1, inplace=True/False)

df = df[['','']].copy()

#It is generally advised to pick the columns needed than drop from the dataframe. How to list all columns? `df.columns`. Then make a variable and assign the columns needed.
cols = ['col1', 'col2', 'col3']
df = df[cols] 

df.isna()
df.isnull()

df.isna().sum()

df.nunique()

df['column_name'].unique()

df['column_name'].value_counts()

df.corr()
1
List all the column names.
2
Mention the columns to drop/remove from DF.
3
Tells pandas this is a new DF and not a reference to the prev DF.
4
Displays true or false for check if there is a null in values.
5
Gives the sum of null values in each columns.
6
Returns the number of unique values in each column.
7
Returns an array of unique values in a specific column.
8
Returns a Series containing counts of unique values in a specific column.
9
Calculates the correlation between numeric columns.

Data Manipulation


df['cleandt'] = pd.to_datetime(df['ColumnName'])

df.rename(columns={'':'','':''})

df.columns = [col.replace(' ', '') for col in df.columns]
1
Change a column to datetime format.
2
Rename column names.
3
Remove white spaces in columns names.

Duplicate rows and columns

df.duplicated()

df.loc[df.duplicated()]

df.loc[df.duplicated(subset=['ColumnName'])]
df.loc[df.duplicated(df.query('column_name==""'))]

df_new = df.loc[~df.duplicated(subset=['ColumnName','ColumnName','ColumnName'])].reset_index(drop=True)
1
True or False for duplicated rows.
2
Select rows that are duplicated.
3
Finds duplicate rows based on the ‘ColumnName’ column. The result will be a DF containing the duplicate rows.
4
Inverse of duplicated values. This way only non-duplicated rows can be selected and assigned to new DF. We reset_index to reset the index.

Aggregation

df.groupby('column_name').agg({'column_to_aggregate': 'aggregation_function'})

df['column_name'].sum() .mean() .median() .min() .max() .std() .var() .count()

df['column_name'].quantile(q) .cumsum() .cumprod()

df.agg({'column_name_1': 'mean', 'column_name_2': 'sum'})

df.resample('D').sum()
1
Groups data by a specific column and applies an aggregation function to another column.
2
Aggregate functions that return a single value.
3
Calculates quantile(0.25), cumulative sum and product.
4
Calculates a separate aggregate for each column.
5
If the date is the index, then the DF can be resampled by specified time frequency and aggregated.

Pivot Table

Pivot table is allows to reorganize and aggregate data based on one or more columns. It provides a way to create a multidimensional view of your data. It is a powerful reporting tool.

import pandas as pd

# Create a sample DataFrame
data = {'category': ['A', 'B', 'A', 'B', 'A', 'B'],
        'values': [10, 20, 30, 40, 50, 60]}

df = pd.DataFrame(data)

# Create a pivot table
pivot_table = df.pivot_table(values='values', index='category', aggfunc='sum')

print(pivot_table)
          
          values
category       
A            90
B           120
  • values: The column to aggregate (in this case, ‘values’).

  • index: The column to use as the index of the pivot table (in this case, ‘category’).

  • aggfunc: The aggregation function to use when summarizing the data (in this case, we use ‘sum’ to add up the values).

Windowed aggregates

df['Rolling Mean'] = df['Value'].rolling(window=3).mean()

df['Expanding Sum'] = df['Value'].expanding().sum()

df['Shifted Value'] = df['Value'].shift(1)

df['Shifted Value'] = df['Value'].shift(-1)

df['Rank'] = df['Value'].rank()

df['Percentage Change'] = df['Value'].pct_change()

weekly_rolling_mean = df['data'].resample('W').mean().rolling(window=3).mean()
1
Computes rolling statistics, such as rolling mean, sum, etc., over a specified window of rows.
2
Computes expanding statistics, which includes all preceding rows.
3
Shifts the values of a column by a specified number of periods. Here it shifts down the current row by one row. SQL equivalent of LAG.
4
Shifts up the current row by one row. SQL equivalent of LEAD.
5
Assigns a rank to each value in a column based on a specified ordering.
6
Computes the percentage change between the current and a prior element.
7
Resample to weekly data and calculate the rolling mean over a window of 3 weeks.

Notes on lead and lag functions

Lead Function

The lead function provides information about future values. For example, if you have a time series dataset and you apply a lead function with a lead of 1, it will give you the value of the next time period.

Leads are used to make predictions or forecasts based on historical data. For instance, if you’re trying to predict sales for the next month, you might use a lead function to access the current month’s data.

Lag Function

The lag function provides information about past values. For example, if you have a time series dataset and you apply a lag function with a lag of 1, it will give you the value of the previous time period.

Lags are used for various purposes, including trend analysis, identifying patterns, and calculating changes over time. For instance, if you want to calculate the month-to-month growth rate, you might use a lag function to access the previous month’s data.

There is also method chaining. To know more on that and others Pandas concepts, refer to my other notes.

Want to support my blog?

Buy Me A Coffee